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Abstract. The formalism of the Wigner distribution function i s  reviewed. In addition to 
the Liauville equation, which expresses the time rate o f  change of this function in terms 
of its Moyal bracket with the Hamiltonian, and i t s  expression as a projection operator, a 
third equation i s  proposed with the aid of  an auxiliary variable 5, to which a formal solution 

addition, an ob initio solution to the three equations in terms of an error function i s  found 
for the free particle in one dimension. Two v i e w  are advanced: the orthodox, that this 
new equation i s  merely a cansistencyrequirement, andthespeculative, that the measurement 
process has something to do with the choice of .s. 

is ionriluried ill tClliiS of i l l U W l l  quantum-,nrci,anicai rigrI,iu,lliiurlS and cigmvaiur,. ill 

. TL^ ..,:"-"- .a:...-:I....:-.. ,.. .....:-.. L. 1115 ..1~"S, U l J l l l " Y l l " l l  lUl lCl lYl l  

There are many presentations of quantum mechanics of which the best known are the 
original Schrodinger-Dirac-Heisenberg formulation, and the functional integral 
approach of Feynman. There is a third, the phase space formulation of quantum 
mechanics due  to Wigner [ 11, which is much less well known, but which has enjoyed 
somethizg of E reviva! recen!!y ir? !he ceztex! of qnar?!um op!ics. Wigner wan!& !o 
construct an  object from the quantum-mechanical wave function which behaved like 
a conventional probability distribution; h e  succeeded in constructing a distribution 
which was real, but not positive. Moyal then wrote the evolution equation for this 
distribution, introducing his famous bracket [2], and in a remarkable paper, which 
deserves to be  better known, Baker [3] argued the converse, that the equation proposed 
by Moya!, together with a projectinn propeny of the Wigner distribution filmtion, 
implied quantum mechanics. More than 25 years ago one of us (DBF) [4] wrote an  
article in which he attempted t o  motivate these equations of phase space quantum 
mechanics from probability arguments. The  starting point was the postulate of the 
existence of a real function f ( x ,  p ,  I), the Wigner distribution, which acts as quasi- 
probability distribution function in the sense that the energy E of a system (taken as 
one-dimensional for simplicity of presentation) is the expectation value of the 
Hamiltonian H ( x ,  p) of the system with respect to the real, but not necessarily positive, 
distribution f ( x ,  p, I ) .  Symbolically; 
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The idea of [4] was to describe a local relation betweenfand H such that this equation 
would be automatically true, upon integration, whatever choice of H ( x , p )  is made. 
He deduced from it two equations (6) which are easily seen to be a consequence of 
the time independent Schrodinger equation. To explain those equations, which are the 
starting point of this discussion it is most convenient to begin with the definition off 
in terms of the Schrodinger wave function $(x, t )  

D B Fairlie and C A  Manogue 

Now suppose $(x, f) is expanded in terms of normalized time-independent eigenfunc- 
tions $j(xj as 

(3). ( i /  d ) E {  $(x, t )  = 1 aj$j(x) e 

Then, in terms of the functions A x ,  which are density matrix elements given by 

we have 
I < )  
\dl 

jyX, P, ;I = c c;ckj", & c / h K , - E L ) '  

J.* 

In [4] it is shown that the satisfy two equations, which follow directly from the 
time-independent Schrodinger equation (note: the same method of proof is discussed 
below in the derivation of (31)):  

where the cosine and the sine brackets are the even and -i x odd powers of an expansion 
of the exponential bracket in powers of h / 2  

exp i ( f (x ,p) ,  dx, PI} 
A_( .. = I  (x, p ) * g ( x ,  p i  

f ( x ' ,  p')g(x", p " )  dx'dx"dp'dp" ( 7 a )  
P P' P" 

The sine bracket is in fact just another name for the Moyal bracket, and equation (66) 
is the time-independent formulation of the equation for the density matrix elements 
which is equivalent to the Schrodinger equation [2,3]. Equation ( 6 a )  appears in 
reference [4j where it is exp!ici!!y verified for the c8se of !he harmonic orcl!!ator but 
has never to our knowledge been taken up elsewhere. 

It is this equation ( 6 a ) ,  the 'third equation' of the title, which is the focus of the 
present article, whose purpose it is to extend equations (6a, 6)  to the time-dependent 
case, guided by more recent understanding of the role of the exponential bracket as 
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the unique associative product [5-71 and of the supersymmetric nature of the algebra 
generated by the sine and cosine brackets, which is already implicit in the equations 
of Baker's paper [3]! These insights suggest that the exponential bracket, or star 
product, as it is alternatively called is the fundamental entity, and that corresponding 
to (661, for which a time-dependent extension has been known from the beginning of 
the subject, a similar extension ought to exist for ( 6 a ) .  In order to produce this equation, 
we are led to the introduction of an additional variable, which we call s, which plays 
the role of the imaginary part of a complex time, but also appears by itself. We should 
emphasize at this point that since we can exhibit solutions of the new equation 
corresponding to any given quantum-mechanical eigenfunction expansion, this par- 
ameter s may just be an artifact, and the new equation just a consistency condition to 
be fulfilled. On the other hand, equations often have a life of their own, and admit 
solutions beyond their original region of validity. Some of these issues are examined 
in the last section, where the solution corresponding to a free particle is discussed. 

2. Some useful identities 

A number of identities on the sine and cosine brackets will be used throughout this 
paper. To display them it  is convenient to revert to a notation similar to Baker's original 
one: 

1 1 

2! 3! 
E*(f)d" 1+f+- f * f+ - f * f * f+ .  . .  . 

The star exponential E * ( f )  is well-defined as the star product is associative. Note that: 

The following identities hold: 

[f;sl '  h = [ h , f l '  g = k .  h 1 . f  

All these identities, with the exception of the last, are i n  Baker's paper [3], and are 
Jacobi identities for a superalgebra, though nobody realized it at the time! Those which 
are not obvious may be easily proved by going to a Fourier resolution for 1; g, h. 
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The following identities will also be useful: 

E*(-f)*€*(f) = P ( f ) * E * ( - f )  = 1 

and 

(-2iA)’ 
r !  

€*(AH)*f*€*(-AH) =I- [. . . [[L H I ,  HI . . . , HI 

€*(AH)*f*€*(AH)=I=(  . . .  ( ( f , H ) , H )  , . _ ,  H )  

(120) 

(126) 
(7.A)‘ 

r !  

(c.f. the identities familiar from exponentiation: 

A ,  
r .  

e x p ( A H ) f e x p ( - A H ) = ~ I [ .  . .[[f, H],HI ..., HI 

A r  
exp (AH)fexp(AH)=x-{  . . .  {{f;H},H} _ _ _ ,  H }  

r !  

(13) 

where the star product is identified with the ordinary product, the star exponential 
with the ordinary exponential, and  2i times the sine bracket and 2 times the cosine 
bracket with the ordinary commutator [ , ]  and  anticommutator { ,}, respectively.) To 
prove (111, expand the star exponentials according to ( S f ) ,  use associativity of the 
star product, and regroup. To prove (12), use a similar method, and regroup using 

(14) 

which follow directly from (9). The factors of 2 and i on the right-hand side of (14) 
are  the extra factors of 2 a n d  i which appear in (12) compared with (13). 

f * H -  H*f=  2i[H,f] f* H + H*f = 2( H, f) 

3. The time-dependent case 

Baker [3] demonstrates that the two equations 

J 
Ji h-f(x,  P. 0 = [ f (x ,  P, I ) ,  H ( x ,  P)I  

( f ( x ,  P. t ) , f ( x ,  P, 1 ) )  = . f (x ,  P. t )  (16) 
where (Y is a proportionality constant, are equivalent to the conventional formulation 
of time-dependent quantum mechanics. He shows that (16) implies the existence of a 
wavefunction fi(x, f )  such that f ( x ,  p. f )  may be expressed in the form (21, and  that 
(15) then implies that fi(x, i )  satisfies the time-dependent Schrodinger equation. 
Equation ( i s )  is just ihe weii known iiouviiie equaiion for ihe Wigner fuiiciion, and 
clearly gives (66) when f (x, p, 1 )  is expressed in terms of an eigenfunction expansion 
as in equation ( 5 ) .  Note that since the sine bracket is antisymmetric (16) may be written 
equally well in terms of the star product as 

(17)  f (x ,  P. f ) * f ( X ,  P. 1) = .fix, P, 0.  
!! i s  easy see !h.! (!6) i s  rompatib!. with ( ! 5 ) .  Ry !his we mpan !hat i f f  satisfies 

(18) 

(15), then so does ( J f )  
J 

[ ( L f ) ,  H1=2([1; HI,f)=:(fi:Lf) = h ; ( f ’ f )  

where we have used (lOf) in the first equality and (15) in the second 
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4. A further generalization 

The problem remains as to how to extend equation (6a) so that it will continue to 
hold in the time-dependent case. An obvious generalization would be to extend the 
functional dependence off to an additional variable, s say. and postulate the equations 

a 

a 

h p ,  P, s, 1 )  = ( f ( x ,  P, s, t ) .  H ( x ,  PI) 

f i ~ f ( x .  P. s, t )  = [ f ( x ,  P, s, t ) .  H ( x ,  P I ] .  

(190) 

(196) 

With an eigenfunction expansion for f (x, p ,  s, t )  of the form 

(20) 1 f ( x , p ,  s, t )  = 1 a:akXk exp --(E,(t+is)-E,(t-is))  
1.k Gi 

it is evident that equations (19) reproduce (6). 
Equation (19a) is a new equation. It is interesting to note that if both (190 )  and 

(19b) are to be satisfied simultaneously, then an integrability condition arising from 
the two ways of evaluating [a2f(x, p,  s, f ) ] / d s  J I  must be fulfilled. I n  fact it is always 
satisfied in consequence of the identity ([f; H I ,  H )  = [(L H ) ,  HI ,  which is a special 
case of (lOf). 

However, the nonlinear relation (16) is not compatible with (19a), nor does the 
eigenfunction expansion (20), which gives the time-independent equation (6a), satisfy 
(16), as there is no s-dependence yet. Is it possible to modify (16) i n  such a way that 
compatibility of all three equations is maintained and there is no conflict with orthodox 
s-independent quantum mechanics? It turns out that in fact (16) requires very little 
modification, beyond the replacement oft  by t -is. In  a manner which we shall explain 
(16) can be viewed as a boundary condition. 

First we introduce the following modification; postulate an  f ( x , p ,  s, I )  such that 

f ( x , p , s ,  r ) * f ( x , p , - s , f ) = O l f ( x , ~ , O , f - i s ) .  (21)  
It is easy to verify that the expansion (20) satisfies (21), provided the following 
orthonormality conditions on the time-independent density matrix elements are 
fulfilled: 

f",%i = % J , .  ( 2 2 )  
These are the same orthonormality conditions that occur in the s-independent case 
[4]. Asin(I8),thecompatibilityof(Zl) with (196) isaconsequenceof(lO).Compatibil- 
ity with (19a) is proved as follows. Differentiate (21) with respect to s; 

J 
a h - - f ( x , p , O ,  f -is)  

as 
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But this is an identity on account of the independence of f (x ,  p, 0, /-is) upon t+is.  
The third line in the above derivation follows from the second since f * H =  
(1; H)+i[1 ;  H I  is an associative product, so that there is a cancellation of terms, 

The next step is to manipulate (16) to cast it in the form of equation (21). Write 
(16) with the argument shifted to 1-is; 

D B Fairlie and C A  Manogue 

f(x,~,O,/-is)*/(x,p,O,~-is)=af(x,p,o,r-is). (24) 
The remarkable fact is that the left-hand side of this equation together with (19a, b) 
implies the left-hand side of (21). Expand the left-hand side of (24) in a Taylor 
expansion in s; 

f ( x ,  P, 0, I - i s ) * f ( x ,  P, 0, f -is) 

Now convert to sine brackets: 

s m [ .  . . [[f(x, P, 0, 0 ,  H I ,  H I , .  . . H I  
(ih)"m! =I 

Use (12a), ( I l ) ,  and (126) to convert the sine brackets in the above expansion into 
cosine brackets: 

s"'(. . . ( ( f ( x , ~ ,  0,  0 ,  H ) ,  H ) ,  . . . H )  
h"m! =x 

Next, the nested cosine brackets are turned into derivatives with respect to s to give 

(Here f " ( x . p . 0 ,  1 )  denotes ( J " / J s " ) f ( ~ , p ,  s, /)l.=o.) But this expression is just the 
Maclaurin expansion of the left-hand side of (ZI), 

= f ( ~ . p , ~ , f ) * f ( x , ~ , - ~ ,  O=af(x ,p ,O, r - i s )  (29) 

where the last equality uses (24). Thus (16) is in the nature of a boundary condition 
upon f (x, p, s, 1 - is) where the third variable is set to zero. 

5. Interpretation 

Two views are possible. The conservative approach is that equations (19) and (21) in  
fact add nothing to the physics of the situation, as a solution f(x,p,s,  0 to those 
equations can always he built from a conventional quantum-mechanical wavefunction 
by way of an eigenfunction expansion and substitution in (20). Thus the role of the 
additional parameter s is entirely spurious. 
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The unconventional point of view would be to trust the equations, and ask whether 
they admit solutions, which though perhaps representable in terms of an eigenfunction 
expansion, surpass the familiar description of quantum-mechanical events, and possibly 
cast some light on the measurement process. A central issue is whether there exists 
some sort of physical interpretation for the parameter s. In some respects it behaves 
like an inverse negative temperature, as the classical solution of (19), (211, i.e. 
in the limit h + 0, is, for time-independent Hamiltonians, simply J(x, p, s) = 
a exp(2H(x, p ) s ) ,  reminiscent of the Boltzmann distribution. Another possibility is 
that the physics of the situation for a one-particle system, evolving in a two-dimensional 
phase space is best described in a four-dimensional manifold, according to equations 
(19) and (21). However, it may be that only the subspace x, p ,  f is physically accessible 
to us, and we can only perceive objects at s = 0. 

Further insight into the nature of the variable s comes from recasting the theory 
with the additional s variable in  terms of a wavefunction J,(x, s, t),  which is related 
to J(x,p, s, I) by a construction similar to (2), as indeed is guaranteed by (24) and the 
results of Baker [3]. Then, just as (196) is equivalent to the Schrodinger equation 

(30) 
J 

-ih;#(x,s, t ) = H ( x , p ) J , ( x , s ,  1 )  

then the cosine bracket equation ( l9a)  is equivalent to 

(31) 

On the right-hand sides of these equations H, of course, is to be interpreted as an 
operator. These equations are consistent with the hypothesis that the dependence of 
J, upon s, f is through the single complex variable z = I -is. Note that it is only J, 
which has this simple behaviour; J depends upon both z and F. This observation lends 
support to the conservative viewpoint that (190) is merely a construct, and has no 
greater significance. 

As further verification, we show that (30) and (31) imply (190, b ) .  Consider: 

J 
h ;  #(x, s, f )  = H(x, P ) J , ( ~ ,  s, 0. 

J(x'-y,s, t)$(x'+y, s, t )exp  
P P' P" 

H(x", p " )  dx' dx" dp'dp" dy 

x J , ( x ' + y , s ,  f )dx 'dp"dy  

2ip Zip" 
h h -- U +- ( U +  U - x )  &(x+ U, s, r)H( U, p " )  

x #(2u + U - X, S, I) du dp" du 

= 2 1 exp ( -: U )  J(x + u, s, t)H x - U, -7 ~ 

I J ( X - u )  

x Q(x - U, S, t )  du 
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where the substitutions U = X I -  U and U = x + y  have been introduced. The last line 
follows from the penultimate by consideration of the integral 
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1 exp ( y  ( u  + u - x )  H ( U, p ” )  $( 2 u  + U - x ,  s, t )  dp” d U 1 
H ( u , p “ )  is assumed expanded in a power series in p ”  before integration. If H ( x , p )  
separates into a kinetic term plus a p independent term the result follows directly. If 
not, then H(.q -(h/i)(a/Jx) must be interpreted as a normal ordered operator in the 
usual way. In a similar fashion 

S*H= J’ e x p i  -$uj + ( x - u ,  s, t ) H  x + u ,  +: 1 - J ( x + u )  a ) J ( x + u ,  s, 1 )  du. i (34) 

Then taking (32)+(34) and using (30) and (31), we obtain (19a, b) as claimed. 

6. The free particle 

Suppose H =p2/2m, then from (76) we see that (19a, b) become 

af p 2  h a2f 
as - hmf -4, 

_-_ -  J f  P a f  - 
a t  m a x ’  

Equation (356) is satisfied by following functional dependence upon x ,  p ,  t :  

Using an integrating factor then (3Sa) becomes just the heat equation for 

Now from (7b) it is easy to see that the star product in the boundary condition (24) 
becomes the ordinary product 

f ( x , p , O ,  t - i s ) f ( x , p , O ,  / - is)= a f ( x , p , O ,  t- is) .  (39) 

Hence f must be either 0 or (I, i.e. a linear combination of theta functions, with 
alternating coefficients fa .  

The heat equation possesses an elementary solution of Gaussian form: 
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Note that as s + 0 from below this approaches a delta function. It does not, however, 
satisfy (39); but remembering that in consequence of the linearity of (19a) any linear 
functional of a solution is also a solution, provided all operators introduced commute 
with the derivatives we can find a solution in the form of an error function 

As s + o  from bdow, the &stiibutioii fiiiiciion f appioaches a ;het2 :iiiic;ioii of 
(x+pt /m)  and hence satisfies (39). The general solution forf(x,  p ,  s, t )  will therefore 
be expressible as a similar linear combination of error functions. It is interesting to 
note that Bartlett and Moyal discussed the distribution function for a free particle in  
1949 [SI. 
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